
The Hardest CTF I’ve
Ever Done

My Experiences Reverse Engineering an MMORPG

Dave Kukfa

/who

● Dave Kukfa
● Senior Computing Security student @ RIT
● Application Security
● Reverse Engineering
● https://kukfa.co
● @kukfa_

Cheeseburgers without
cheese are just
hamburgers

Agenda

● Project intro
○ Game background
○ Concept of a server emulator
○ Overview of MMO reversing process
○ Tools of the trade

● Technical analysis
○ Technical details of the reversing process
○ My experiences with my specific game

● Project demo
● Legal implications
● Questions

Audience Survey

Are there any...

● MMO players?
● CTF players?
● Game hackers?

Project Intro

Game Background

● Dungeon Runners (NCSoft, 2007)
● MMORPG

○ Online game where thousands of players interact in a virtual world

● Custom game engine
○ Scrapped several times until it became Dungeon Runners

● Decommissioned in 2010
○ Lack of profit
○ Servers shut down

● Game client has no server to connect to

Server Emulator

● An attempt to recreate an online game’s server
● Lots of proprietary components

○ Communication protocol
○ Server architecture
○ Database schemas
○ Etc.

● Involves a great deal of reverse engineering
○ Taking something apart to see how it works
○ Very long, arduous process

● Implementation is generally hacky
○ Built in a ‘guess & check’ fashion

Typical Reversing Process

● Protocol analysis
○ Determine how the client and server communicate
○ Packet identification

■ Identify the different types of packets and their purpose
○ Packet structure

■ “What do these bytes represent or control?”
○ Encryption & checksum algorithms
○ Connection handoffs

■ “At what point does the authentication server direct the client to the game server?”
○ Serialization

■ “How are things like character data sent over the wire?”

Typical Reversing Process cont.

● Server design
○ Designing massive game servers is a very complex problem
○ Architecture

■ Many moving parts
● Authentication server, game logic server, zone servers, database server…

■ Load balancing/caching
○ Database design

■ SQL vs NoSQL? Schema?
○ Code structure
○ Scalability
○ Backups/failover

Typical Reversing Process cont.

● Populate with data
○ Depends on how much data is stored client-side

■ Usually the bulk of it is (good!)
○ Vendor/merchant inventory
○ Quest info
○ Enemies in combat zones
○ Loot/drops
○ If you have it particularly bad:

■ Zone layouts
■ NPC locations
■ Dialogue

Tools of the Trade

● Disassembler
○ Transforms machine language into assembly language
○ Makes a compiled program (sort of) human-readable
○ Static analysis
○ IDA, Binary Ninja, Hopper, Radare2...

● Debugger
○ View the state of a running program

■ Current instruction, register values, memory
○ Dynamic analysis
○ IDA, OllyDbg, gdb, x64dbg...

Tools of the Trade cont.

● Packet sniffer
○ Capture and inspect network traffic
○ Wireshark, tcpdump, Fiddler...

● Hex editor
○ Manipulate binary data (in hex form)
○ HxD, Vim, Hex Fiend...

Technical Analysis

What I Had to Work With

● Dormant game client
● No game server protocol documentation

○ We’ll talk about this in a bit

● No packet captures
● But!

○ Debug symbols
○ Verbose log output

Starting Out

● Game only ran if launched from the publisher’s game portal
● Looked at command-line options

○ ran_from_launcher

● Looking through config folder
○ DungeonRunners.cfg

■ Specifies authentication server addr/port
■ Direct the client to connect to local server

Auth Server Protocol

● So the client can connect to our custom auth server…
○ Now we need to understand the protocol

● Looking through functions list

● ‘lin’ and ‘L2’ prefixes
● Right next to authentication functions

Lin and L2

● Some quick Googling reveals these refer to Lineage II
○ Another NCSoft MMO (2003 - present)
○ Several releases over the years
○ Game has been reverse engineered and publicly documented

● Could DR have borrowed L2’s auth server?
○ Each major L2 release had a different protocol
○ Find an early version of the server and see if it works

● Hunted for an L2 server from around the same time period
○ Easier said than done
○ Old forums/dead links
○ archive.org is a life saver

● Found legacy auth server from 2004

Used to seeing...

After L2

Re-Implementation

● DR did use L2’s authentication protocols
○ This turns out to be a common practice for NCsoft MMOs

● While DR and the L2 server shared the same protocols, the L2 server was
(obviously) built for L2
○ Not 100% compatible out of the box
○ Some things didn’t work

● Instead of changing L2 code, let’s build our own auth server!
● Good news: L2’s protocols have been reversed and publicly documented
● Bad news...

It’s never easy

Rosetta Stone

● After much help from Google Translate, I had a basic working prototype
○ Client logs in
○ Server sends a list of game servers (worlds)
○ Client selects a world and connects to it

● Issue: Client authentication packet did not follow protocol spec
○ Having trouble extracting player credentials
○ Username & password were unintelligible blobs of data
○ Needed to figure out how credentials were being encrypted

Finding Encryption Routine

And the key is...

And the key is...

...TEST with 4 null bytes

Credential Encryption

● Algorithm: DES
● Symmetric Key: TEST + 4 null bytes
● Mode of Operation: Take a guess, given our track record

○ Yeah, ECB

● Block size: 64 bits (8 bytes)
○ This presents an interesting problem

L2 Login specifications

● Max username length: 14 characters
● Max password length: 16 characters
● Total size: 30 characters → 30 bytes

○ ASCII encoded

● DES block size: 8 bytes
○ Can encrypt data with sizes 8 bytes, 16 bytes, 24 bytes, 32 bytes…

● What happens when the credential size isn’t perfectly divisible by 8?
○ You might think it’s padded to round up?

Nope!

● Username: 14characterusr
● Password: 16characterpassw
● Network traffic:

> . ©) ž Ú q . . þ Ç ã ‰ ù

Username

1 2 3 4 5 6 7 8 9 10 11 12 13 14

. ¶ . Ž Š . . . ÿ ³ r p a s s w

Password

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Onwards

● At this point, the authentication server was pretty much figured out
● When the player selects a game server:

○ Game client will disconnect from the auth server
○ Attempts to connect to the game server

● Game server uses a custom (undocumented) protocol
○ Where do I start?

Starting Out

● Tried to mimic the protocol of the auth server
○ Didn’t get too far (two different protocols)

● Good: Verbose game logs pointed out what was wrong
○ Can use this to fix problems and work out correct packet structure

● 3277056 = 0x320100
○ Find where in the packet I’m sending these bytes
○ Modify it and see what happens afterwards

It’s not always easy

● The game doesn’t log every issue it has when things don’t work
● Often need to dive in with a debugger and fix things

○ Identify functions related to the issue you’re having
○ Get an idea of what each function is doing
○ “Are there any checks that are failing?”
○ “What is the expected value of this (register|return value|...)?”
○ Set a bunch of breakpoints
○ Compare actual values to expected values

● Can be very time-consuming and frustrating
○ That’s why these projects take so long to complete
○ If the high-level code was spaghetti, you’ll become real familiar with these steps

Packet Structures

● Eventually identified 4 different packet structures
○ Small tweaks between each variant

● Example:
1. [1 byte] Packet type
2. [3 bytes] Unknown data
3. [4 bytes] Compressed size of packet data + 4 (little-endian)
4. [4 bytes] Uncompressed size of packet data (little-endian)
5. [Variable] Zlib-compressed packet data

● Different ‘packet types’ hold the same data, but are assigned to a specific
packet structure
○ e.g. Packet type 0x02 can only be used with packet structure #4

Channel Types

● Packet data starts out with a 1-byte ‘channel type’
○ Essentially identifies what component of the game server we’re talking to

● Started filling in different values for the channel type and seeing what
happens

● Identified a bunch of different channels:
○ CharacterManagerClient

■ Character selection
○ ClientEntityManager

■ Game entities
○ ZoneClient

■ Entering and leaving different zones (essentially maps)

Channel Data

● After the channel type, we can start feeding data to be sent to that
channel

● Usually starts with an identifier for the packet we’ll be sending
● e.g. for CharacterManagerClient:

○ 0x00: Connected
○ 0x01: Disconnected
○ 0x02: CharacterCreated
○ 0x03: GotCharacter
○ 0x04: Enter Character Creation Screen

● This is followed by additional data for that packet
○ e.g. a list of the player’s characters, a serialized character...

Current State

● After piecing enough of these together, I was able to get some basic game
functionality
○ Character serialization
○ Creating a character
○ Sending character list

● There’s still a lot to be done
○ Loading into a zone
○ Creating game entities

■ Other players
■ Monsters

○ Synchronizing multiple clients
○ Properly architect the server

Project Demo

Legal Implications

Game Company Stances

● They (usually) don’t like it
○ Large game companies will fight tooth and nail over intellectual property
○ Indie studios might be more relaxed, but it’s a toss-up

● Some famous examples:
○ (2016) Nostalrius shut down

■ WoW private server with 150k+ active users
○ (2012) UMaple lawsuit

■ Ordered to pay $3.6M to Nexon
○ (2009) Scapegaming lawsuit

■ Ordered to pay $88M to Blizzard
○ (2008) Glider Bot lawsuit

■ Ordered to pay $6M to Blizzard

NCSoft History

● (2006) Lineage II FBI investigation & home raid
● (2007) City of Heroes Cease & Desist
● (2010) Aion C&D
● (2011) Tabula Rasa C&D
● (2012) Exteel C&D
● (2014) Lineage I C&D

EFF Exemptions

● EFF landed recent DMCA exemption for video game archiving
● Proposed to reduce legal uncertainty of reversing games for preservation

purposes
● Catch: Not intended to apply to games with persistent worlds

○ Literally the definition of MMORPGs

● Interpretation has been debated
● General consensus is the exemption does not apply to MMO server

emulators

Case for Dungeon Runners

● Attempts to purchase IP have gone nowhere
● Continue reversing the game
● Avoid piracy

○ Don’t distribute the game client
○ Don’t use NCSoft-owned server code

● Not meant to be commercial
○ Only intend to restore gameplay

● Hope for the best

Questions?

Thank you!
dkukfa@mail.rit.edu

https://kukfa.co
@kukfa_

